Spark on YARN

1.Spark的架构图

一个excutor中可以跑多个Task

(1)MR:base-process

​ 每个Task都有自己的进程,:MapTask,ReduceTask (process)

​ 每个Task完成,这个进程也就结束

(2)Spark:base-thread

​ 多个Task(线程)并发的运行在一个进程中,这个进程会一直存在于整个生命周期,即使没有job运行,空的也没有关系

​ Spark这样的好处:speed(速度快),Tasks可以直接启动

(3)Cluster Manager

​ SparkApplication—–>Cluster Manager(通过Cluster Manager去申请资源)

这一过程可以跑在 Local,standalone,YARN,K8S,Mesos—–>pluggable(可插拔的)

(4)Application Master:AM

​ YARN Application—–>AM(first container,启动的第一个container)

​ YARN 上是没有WorkNode的

​ YARN:executor跑在container(所以container的内存肯定要大于executor内存)

(5)Deploy Mode

​ client:Driver 跑在Local:AM只负责申请资源

​ cluster:Driver跑在cluster(Driver在集群的AM中)AM申请资源,task的调度(AM和driver在一起)

2.Client模式

说明如下:

  • Spark Yarn Client向YARN的ResourceManager申请启动Application Master。同时在SparkContent初始化中将创建DAGScheduler和TASKScheduler等,由于我们选择的是Yarn-Client模式,程序会选择YarnClientClusterScheduler和YarnClientSchedulerBackend;
  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,与YARN-Cluster区别的是在该ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的分派;
  • Client中的SparkContext初始化完毕后,与ApplicationMaster建立通讯,向ResourceManager注册,根据任务信息向ResourceManager申请资源(Container);
  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向Client中的SparkContext注册并申请Task;
  • client中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向Driver汇报运行的状态和进度,以让Client随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;
  • 应用程序运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己;

3.Cluster模式

说明如下:

  • Spark Yarn Client向YARN中提交应用程序,包括ApplicationMaster程序、启动ApplicationMaster的命令、需要在Executor中运行的程序等;
  • ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,其中ApplicationMaster进行SparkContext等的初始化;
  • ApplicationMaster向ResourceManager注册,这样用户可以直接通过ResourceManage查看应用程序的运行状态,然后它将采用轮询的方式通过RPC协议为各个任务申请资源,并监控它们的运行状态直到运行结束;
  • 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向ApplicationMaster中的SparkContext注册并申请Task。这一点和Standalone模式一样,只不过SparkContext在Spark Application中初始化时,使用CoarseGrainedSchedulerBackend配合YarnClusterScheduler进行任务的调度,其中YarnClusterScheduler只是对TaskSchedulerImpl的一个简单包装,增加了对Executor的等待逻辑等;
  • ApplicationMaster中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向ApplicationMaster汇报运行的状态和进度,以让ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务;
  • 应用程序运行完成后,ApplicationMaster向ResourceManager申请注销并关闭自己;

4 Client模式 vs Cluster模式

  • 理解YARN-Client和YARN-Cluster深层次的区别之前先清楚一个概念:Application Master。在YARN中,每个Application实例都有一个ApplicationMaster进程,它是Application启动的第一个容器。它负责和ResourceManager打交道并请求资源,获取资源之后告诉NodeManager为其启动Container。从深层次的含义讲YARN-Cluster和YARN-Client模式的区别其实就是ApplicationMaster进程的区别;
  • YARN-Cluster模式下,Driver运行在AM(Application Master)中,它负责向YARN申请资源,并监督作业的运行状况。当用户提交了作业之后,就可以关掉Client,作业会继续在YARN上运行,因而YARN-Cluster模式不适合运行交互类型的作业;
  • YARN-Client模式下,Application Master仅仅向YARN请求Executor,Client会和请求的Container通信来调度他们工作,也就是说Client不能离开;

本文标题:Spark on YARN

文章作者:skygzx

发布时间:2019年05月10日 - 16:14

最后更新:2019年05月10日 - 17:28

原始链接:http://yoursite.com/2019/05/10/Spark on YARN/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

-------------本文结束感谢您的阅读-------------
0%